
主要特点:

- 传感器保证在所有条件下的高可靠性
- 机械结构使HPC 适合应用在强烈振动的情况中
- 超出理论电气行程后无电气信号输出变化安装更简单
- 广泛应用于注塑机,立式注塑机和其他许多生产设备

技术规格

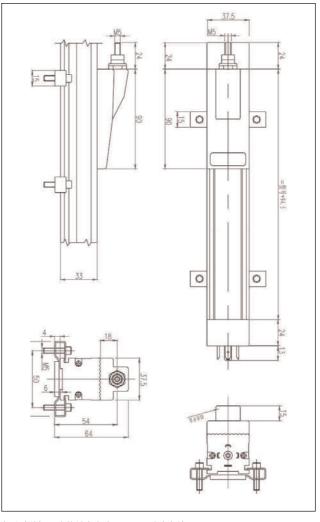
有效(可选量程mm)	50/75/100/125/150/175/200/225/250					
电气行程 (C.E.U.)	275/300/325/350/375/400/425/450/475					
	500/550/600/650/700/750/800/850/900					
独立线性度 (C.E.U.范围内)	±0.05%					
分辨率	无限					
重复性	0.01mm					
电气连接	M12 4针接头					
位移速度	标准≤10m/s					
防护等级	IP65					
使用寿命	>25x10 [°] m行程,或100x10 [°] 次,					
	二者取小(C.E.U.范围内)					
_位移力	≤25N					
振动	5-2000Hz,Amax=0.75mm					
	max.=20g					
_冲击	50g,11ms.					
加速度	200m/s ² 最大(20g)					
_ 电阻容差	± 20%					
推荐游标电流	<0,1μA					
最大游标电流	10mA					
最大应用电压	60V					
电气绝缘	>100MΩ(500V=,1bar,2s)					
绝缘强度	< 100 μ A(500V~,50Hz,2s,)					
40° C时的损耗(120° C时0W)						
电阻温度系数	典型值: -200+200ppm/° C					
输出电压的实际温度系数	≤5ppm/° C,典型值					
工作温度	_30+100° C					
贮存温度	_50+120° C					
传感器外壳材料	阳极氧化铝尼龙66G25					
拉杆材料	不锈钢 AISI 303					
_ 安装	<u>中心间距可调试支架或用M5螺丝</u>					
	ISO4017-DIN933					

机械尺寸

重要提示:产品说明中包括线性度、使用寿命、温度系数在内的所有数据,只有在通过游标回路的最大电流Ic≤0.1µA时才有效。

HANJI

HPS系列滑轨式直线位移传感器 直线位移传感器 最大工作量程可达3000mm



特点:

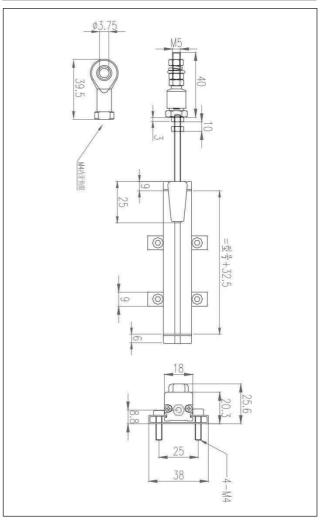
- 无杆设计
- 球铰结构可避免侧向载荷
- 不同应用条件下,使用寿命长达100 x 106次
- 线性优异, 高达±0.02%
- 分辨率高于0.01mm
- 运行速度高
- DIN 43650 标准插头和插座
- 面朝下安装时, 防护等级IP 54

技术参数

有效电气行程(C.E.U.)	100/130/150/175/200/225/250/300				
13.3%.6 (11.17)	350/360/400/450/500/600/700/750				
	850/900/1000/1250/15001750/2000				
独立线性度(C. E. U范围内)	$\frac{\frac{8307300710007123071300113072000}{\pm 0,05\%}$				
分辨率	无限制				
重复性	0.01mm				
电气连接	DIN 43650 标准4 极插座				
七位技	DIN 43030 核特性4 核加性				
防护等级	IP54				
位移速度	5m/s				
位移力	1. 2 N				
振动	5-2000Hz, Amax=0. 75mm				
400 /4	amax. =20g				
冲击	50g, 11ms.				
加速度	200 m/s² 最大 (20g)				
电阻容差	±20%				
推荐游标电流	<0, 1µA				
最大游标电流	10mA				
最大应用电压	36V				
电气绝缘	>100M(500V=, 1bar, 2s)				
绝缘强度	< 100 µA (500V~, 50Hz, 2s, 1bar)				
40°C时的损耗(120°C时0W)	3W				
电阻温度系数	-200 - +200 ppm/° C, 典型值				
输出电压的实际温度系数	⟨5ppm/°C,典型值				
工作温度	-30+100° C				
贮存温度	-50+120° C				
外壳材料	阳极氧化铝尼龙66G25				
安装	纵向轴可调式支架				
	配 M5 螺钉				

HPCM微型抽芯式直线位移传感器

直线位移传感器 最大工作量程300mm



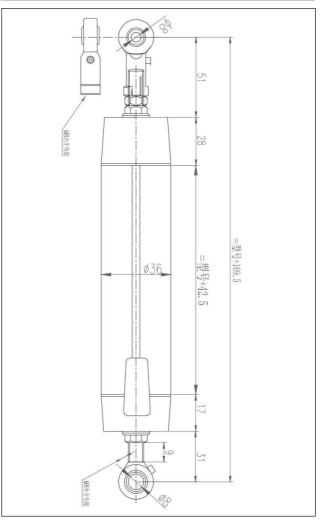
特点:

- 使用寿命长,运行次数可达10 x 10 6次运动
- 线性优异,可达 ±0.1%
- 双轴承连动杆
- 特别设计的球铰结构可消除侧向应力
- 运行速度最高可达5 m/s
- 抗冲击和振动的性能优异
- 输出电缆或插头可选

技术参数

有效电气行程(C. E. U.)	10/25/50/75/100/125/150/175/200 225/250/275/300				
	225/250/275/500				
独立线性度 (C. E. U范围内)	±0,1%				
分辨率	无限制				
重复性	0.01mm				
电气连接	直接出线				
防护等级	IP65				
位移速度	5m/s				
	1.2 N				
振动	5-2000Hz, Amax=0.75mm				
	amax.=20g				
冲击	50g, 11ms.				
加速度	200 m/s² 最大 (20g)				
电阻容差	±20%				
推荐游标电流	<0, 1μA				
最大游标电流	10mA				
最大应用电压	36V				
电气绝缘	>100M(500V=, 1bar, 2s)				
绝缘强度	< 100 uA (500V [~] , 50Hz, 2s, 1bar)				
40°C时的损耗(120°C时0W)	3W				
电阻温度系数	-200 - +200 ppm/°C, 典型值				
输出电压的实际温度系数	< 5ppm/°C, 典型值				
工作温度	−30+100° C				
贮存温度	−50+120° C				
外壳材料	阳极氧化铝尼龙66G25				
安装	扣压式可调节固定夹钳				
	-				

HPP铰接式直线位移传感器 直线位移传感器 最大工作量程可达1000mm



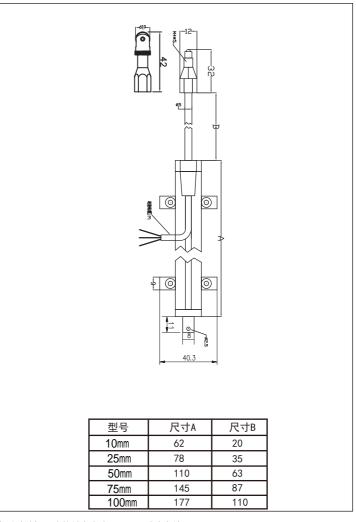
特点:

- 双端轴承受力杆
- 铰接头部安装万向头,可提供大角度的自由运动(最大至±12.5%)
- 线性优异, 高达±0.05%
- 分辨率高于0.01mm
- 使用寿命长,不同应用情况下,运动次数高达5 千万次
- 防护等级IP 65
- 可选直出电缆或插头连接

技术参数

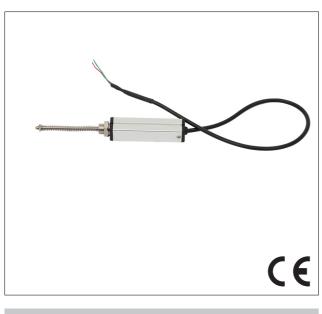
有效电气行程(C. E. U.)	75 /100 /105 /150 /175 /000 /050 /000					
有效电气11柱(C.E.U.)	75/100/125/150/175/200/250/300					
	350/400/450/500/600/700/750					
VI > /	850/900/1000					
独立线性度(C. E. U范围内)	±0,05%					
分辨率	无限制					
重复性	0. 01mm					
电气连接	直接出线					
防护等级	IP65					
位移速度	5m/s					
位移力	1.2 N					
振动	5-2000Hz, Amax=0.75mm					
	amax. =20g					
冲击	50g, 11ms.					
加速度	200 m/s² 最大 (20g)					
电阻容差	±20%					
推荐游标电流	<0, 1uA					
最大游标电流	10mA					
最大应用电压	36V					
电气绝缘	>100M(500V=, 1bar, 2s)					
绝缘强度	< 100 µA (500V ² , 50Hz, 2s, 1bar)					
40°C时的损耗(120°C时0W)	3W					
电阻温度系数						
输出电压的实际温度系数	⟨5ppm/°C,典型值					
工作温度	-30+100° C					
	-50+120° C					
外壳材料	阳极氧化铝尼龙66G25					
安装	见图					
	7151					
	-					

HPRM内置弹簧系列位移传感器 直线位移传感器 最大工作量程150mm



主要特征:

- ●传感器采用侧面双向控制通杆结构,整体强度更高。
- ●测杆通过复位弹簧自动复位,适用于各种对比测量。
- ●测头采用滚柱轴承设计,可满足轴向垂直方向 位移测量需要(测杆无转动)。
- ●本系列传感器是检测各种板材平整度和厚度的 理想选择。另外,本系列传感器还能用于各种测 杆与运动对象无法固定情况下的阀门和机械部件 测量。


技术参数

有效电气行程(C. E. U.)	5/10/15/25/50/75/100mm
独立线性度 (C. E. U范围内) 分辨率 重复性 电气连接	±0.1%-0.25% 无限制 0.01mm 直接出线
防护等级 位移速度 位移力 振动	IP55 5m/s 1.2 N 5-2000Hz, Amax=0.75mm
冲击 加速度 电阻容差 推荐游标电流 最大游标电流 最大应用电压 电气绝缘 绝缘强度 40°C时的损耗(120°C时0W) 电阻温度系数 输出电压的实际温度系数 工作温度 贮存温度	amax. =20g 50g, 11ms. 200 m/s² 最大 (20g) ±20% <0, 1μA 10mA 36V >100μA(500V=, 1bar, 2s) < 100μA(500V^, 50Hz, 2s, 1bar) 3W -200 - +200 ppm/° C, 典型值 -30+100° C -50+120° C 阳极氧化铝尼龙66G25
安装	见图

HANJI

HPRM16系列自复式微型传感器 直线位移传感器

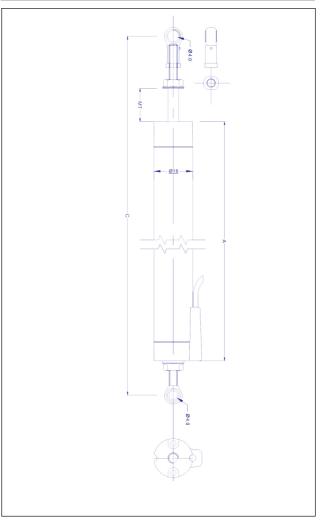
特点:

- · 使用寿命长,运行次数可达500万次
- · 线性优异,可达0.25%
- 回弹式测量
- 安装滑轮顶端可消除侧向应力
- 运行速度最高可达5 m/s
- 抗冲击和振动的性能优异
- 直出电缆

技术参数

有效电气行程 (C. E. U.)	5/10/20/30/50/75/100					
	(其他量程可定制)					
	(2) (1)=== (2) (1)					
独立线性度 (C. E. U范围内)	± 0.25 ~ 0.5%					
分辨率	- 10.25 					
重复性	0.05%					
电气连接	直接出线					
防护等级	IP54					
位移速度	1m/s					
位移力	约2N					
振动	5-2000Hz, Amax=0. 75mm					
	amax. =20g					
冲击	50g, 11ms.					
加速度	200 m/s ² 最大 (20g)					
电阻容差	±20%					
推荐游标电流	<0, 1 µA					
最大游标电流	10mA					
最大应用电压	36V					
电气绝缘	>100M(500V=, 1bar, 2s)					
绝缘强度	< 100 uA (500V [~] , 50Hz, 2s, 1bar)					
40°C时的损耗(120°C时0W)	3W					
电阻温度系数	-200 - +200 ppm/° C, 典型值					
输出电压的实际温度系数	< 5ppm/° C, 典型值					
工作温度	-3085					
贮存温度	常温					
外壳材料	阳极氧化铝 尼龙66G25					
安装	螺纹连接					

HPPM18系列微型铰接式直线位移传感器 直线位移传感器 最大工作量程300mm



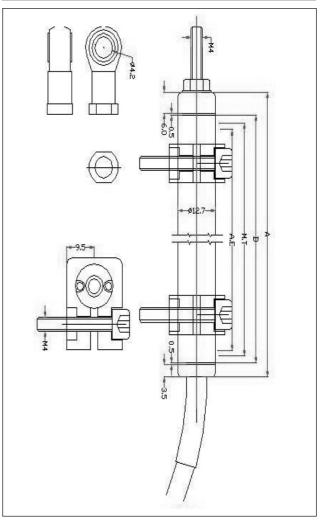
特点:

- 双端轴承受力杆
- 铰接头部安装万向头,可提供大角度的自由运动(最大 至±12.5%)
- 线性优异, 高达±0.1%
- 分辨率高于0.01mm
- 使用寿命长,不同应用情况下,运动次数高达5 千万次
- 防护等级IP 65
- 直出电缆

技术参数

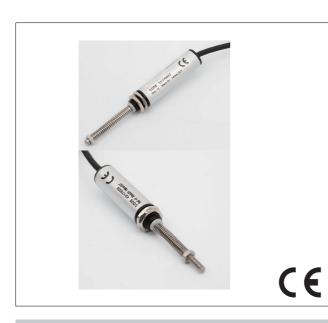
有效电气行程(C.E.U.)	10/25/50/75/100/125/150/175/200					
	225/250/275/300					
独立线性度(C.E.U范围内)	±0,1%					
分辨率	无限制					
重复性	0.01mm					
电气连接	直接出线					
防护等级	IP65					
位移速度	5m/s					
位移力	1.2 N					
振动	5-2000Hz, Amax=0.75mm					
	amax. =20g					
冲击	50g, 11ms.					
加速度	200 m/s² 最大 (20g)					
_ 电阻容差	±20%					
推荐游标电流	<0, 1μA					
最大游标电流	10mA					
最大应用电压	36V					
电气绝缘	>100M(500V=, 1bar, 2s)					
绝缘强度	< 100μA (500V [~] , 50Hz, 2s, 1bar)					
40°C时的损耗(120°C时0W)	3W					
电阻温度系数	-200 - +200 ppm/°C, 典型值					
输出电压的实际温度系数	< 5ppm/° C, 典型值					
工作温度	-30+100° C					
贮存温度	-50+120° C					
外壳材料	阳极氧化铝尼龙66G25					
安装	见图					

HPPM13微型拉杆式直线位移传感器 直线位移传感器 最大工作量程300mm



产品特点

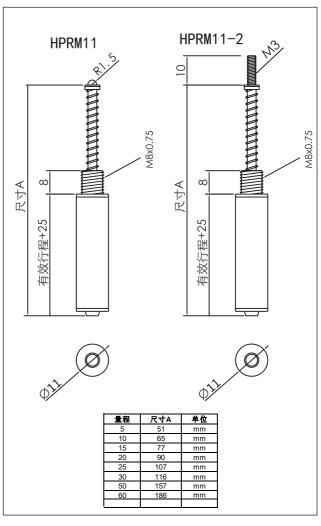
- ●结构紧凑
- ●分辨率优于 0.01mm
- ●可以在各种恶劣环境下使用(潮湿、油污、灰尘)
- ●线性优异
- ●可配置电压电流变送器


技术参数

有效电气行程 (C.E.U.)	10/25/50/75/100/125/150/175/200					
	225/250/275/300					
	$-\frac{1}{\pm 0,1\%}$					
分辨率						
重复性						
电气连接						
防护等级	IP65					
位移速度	5m/s					
位移力	1.2 N					
振动	5-2000Hz, Amax=0.75mm					
	amax.=20g					
冲击	50g, 11ms.					
加速度	200 m/s² 最大 (20g)					
电阻容差	±20%					
推荐游标电流	<0, 1μΑ					
最大游标电流	10mA					
最大应用电压	36V					
电气绝缘	>100M(500V=, 1bar, 2s)					
绝缘强度	< 100μA (500V [~] , 50Hz, 2s, 1bar)					
40°C时的损耗(120°C时0W)	3W					
电阻温度系数	-200 - +200 ppm/° C, 典型值					
输出电压的实际温度系数	< 5ppm/° C,典型值					
_工作温度	−30+100° C					
贮存温度	-50+120° C					
外壳材料	阳极氧化铝尼龙66G25					
安装	见图					

HANJI

HPRM11系列弹簧式 直线位移传感器



特点:

- 使用寿命长,运行次数可达100 x 105次运动
- 线性优异,可达 ±0.1%
- 回弹式测量
- 安装滑轮顶端可消除侧向应力
- 运行速度最高可达5 m/s
- 抗冲击和振动的性能优异
- 直出电缆

技术参数

有效电气行程(C.E.U.)	5/10/15/20/25/30/50/60					
	(其他量程可定制)					
独立线性度 (C. E. U范围内)	± 0.1 ~ 0.5%FS					
分辨率	无限制					
重复性	0.05%					
电气连接	直接出线					
防护等级	IP65					
位移速度	5m/s					
位移力	约1N					
振动	5-2000Hz, Amax=0.75mm					
	amax.=20g					
冲击	50g, 11ms.					
加速度	200 m/s² 最大 (20g)					
电阻容差	<u>±20%</u>					
推荐游标电流	<0, 1μA					
最大游标电流	10mA					
最大应用电压	36V					
电气绝缘	>100M(500V=, 1bar, 2s)					
绝缘强度	< 100 µA (500V~, 50Hz, 2s, 1bar)					
40° C时的损耗(120° C时0W)	3W					
电阻温度系数						
输出电压的实际温度系数	⟨5ppm/°C,典型值 □1000°C □					
工作温度	-30+100° C					
<u> </u>	-50+120° C					
外壳材料	阳极氧化铝 尼龙66G25					
安装	螺纹连接					
	_					
-						
-	-					

传感器测量喷涂在PCB上的导电电阻材料阻值,从而实现精密的控制和调节测量。滑刷安装在连动杆上和导电电阻材料紧密结合。测量精度高、寿命长。

由贵金属制成的多触点、带有弹簧阻尼和独立缓冲装置的滑刷,即使在高速运行或经受冲击和震荡时仍能保证与电阻片的可靠接触。

选型代码

型号			说明					
	****	_	****	_	***	_	*	
系列选择	Н Р С							HPC 抽芯式电子尺 HPS 滑轨式电子尺 HPR 回弹式电子尺 HPCM 微型抽芯式电子尺 HPRM 微型回弹式电子尺 HPP 铰链式电子尺 HPPM 微型铰链式电子尺 HPPM18 直径18MM微型铰链式电子尺 HPPM13 直径13MM微型应弹式电子尺 HPRM16 16MM方形微型回弹式电子尺 HPRM11 直径11MM微型回弹式电子尺 HPSM 微型滑块式电子尺
量程			0 1 0 0					0-100 mm
电气连接					B12			B12 B12赫斯曼接头 D40 M12航空接头4芯 D50 M16航空接头5芯 D51 M12航空接头5芯 D60 M16航空接头6芯 D70 M16航空接头7芯 P01 直出电缆1米
输出方式							R	电位计
选型举例	Н Р С	_	0 1 0 0	_	B12 -	-]	R	HPC系列,100 mm量程

发货内容包括

1 个固定螺帽

推荐辅件

过程显示控制仪表

信号转换器

工作电压12/24V,

标准信号输出

